import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_5(fraudTrain, 10,11406996,0.8)
df_results = try_5(fraudTrain, 10,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 10,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.7, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.917783 | 0.016590 | 0.947368 | 0.032609 | 0.968007 | True | Proposed | 0.131127 | 9009 | amt | 0.505051 | 25980 | 0.001463 | None | 11406996 | 0.8 |
1 | GCN | None | 0.938217 | 0.022547 | 0.973684 | 0.044074 | 0.982845 | True | Proposed | 0.129820 | 9009 | amt | 0.499944 | 25978 | 0.001463 | None | 11406996 | 0.9 |
2 | GCN | None | 0.886999 | 0.012450 | 0.973684 | 0.024585 | 0.960453 | True | Proposed | 0.129633 | 9009 | amt | 0.499278 | 25982 | 0.001463 | None | 11406996 | 0.7 |
3 | GCN | None | 0.941596 | 0.024899 | 0.934783 | 0.048505 | 0.984682 | True | Proposed | 0.120230 | 9009 | amt | 0.500611 | 28885 | 0.001593 | None | 11406996 | 0.9 |
4 | GCN | None | 0.915980 | 0.018661 | 0.867925 | 0.036537 | 0.947152 | True | Proposed | 0.120450 | 9009 | amt | 0.500611 | 28874 | 0.001836 | None | 11406996 | 0.8 |
5 | GCN | None | 0.892921 | 0.011832 | 0.948718 | 0.023373 | 0.958848 | True | Proposed | 0.120417 | 9009 | amt | 0.502054 | 28876 | 0.001351 | None | 11406996 | 0.7 |
6 | GCN | None | 0.940046 | 0.022579 | 0.978261 | 0.044139 | 0.984014 | True | Proposed | 0.109714 | 9009 | amt | 0.500500 | 32508 | 0.001415 | None | 11406996 | 0.9 |
7 | GCN | None | 0.921472 | 0.012408 | 0.864865 | 0.024465 | 0.963446 | True | Proposed | 0.109427 | 9009 | amt | 0.500056 | 32498 | 0.001139 | None | 11406996 | 0.8 |
8 | GCN | None | 0.895498 | 0.011357 | 0.975000 | 0.022453 | 0.960901 | True | Proposed | 0.108611 | 9009 | amt | 0.495948 | 32497 | 0.001231 | None | 11406996 | 0.7 |
9 | GCN | None | 0.947098 | 0.032544 | 0.970588 | 0.062977 | 0.985970 | True | Proposed | 0.098821 | 9009 | amt | 0.498501 | 37125 | 0.001832 | None | 11406996 | 0.9 |
10 | GCN | None | 0.911643 | 0.012940 | 1.000000 | 0.025550 | 0.980952 | True | Proposed | 0.099066 | 9009 | amt | 0.502498 | 37122 | 0.001158 | None | 11406996 | 0.8 |
11 | GCN | None | 0.894713 | 0.013640 | 0.931034 | 0.026886 | 0.969827 | True | Proposed | 0.098448 | 9009 | amt | 0.497724 | 37127 | 0.001562 | None | 11406996 | 0.7 |
= try_5(fraudTrain, 10,1e+7,0.8)
df_results = try_5(fraudTrain, 9,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 8,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 7,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 6,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 5,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.920676 | 0.019971 | 1.000000 | 0.039161 | 0.977881 | True | Proposed | 0.129262 | 9009 | amt | 0.497391 | 25982 | 0.001617 | None | 10000000.0 | 0.8 |
1 | GCN | None | 0.924151 | 0.018834 | 0.954545 | 0.036939 | 0.975426 | True | Proposed | 0.120242 | 9009 | amt | 0.500722 | 28873 | 0.001524 | None | 10000000.0 | 0.8 |
2 | GCN | None | 0.921382 | 0.015046 | 0.951220 | 0.029624 | 0.975071 | True | Proposed | 0.109015 | 9009 | amt | 0.497724 | 32499 | 0.001262 | None | 10000000.0 | 0.8 |
3 | GCN | None | 0.926061 | 0.018253 | 0.962264 | 0.035827 | 0.972528 | True | Proposed | 0.098496 | 9009 | amt | 0.498501 | 37125 | 0.001428 | None | 10000000.0 | 0.8 |
4 | GCN | None | 0.925250 | 0.018226 | 0.909091 | 0.035736 | 0.974611 | True | Proposed | 0.087928 | 9009 | amt | 0.503386 | 43318 | 0.001524 | None | 10000000.0 | 0.8 |
5 | GCN | None | 0.916731 | 0.019714 | 0.988636 | 0.038658 | 0.979137 | True | Proposed | 0.074902 | 9009 | amt | 0.497169 | 51964 | 0.001693 | None | 10000000.0 | 0.8 |